Effect of the SiCl4 Flow Rate on SiBN Deposition Kinetics in SiCl4-BCl3-NH3-H2-Ar Environment
نویسندگان
چکیده
To improve the thermal and mechanical stability of SiCf/SiC or C/SiC composites with SiBN interphase, SiBN coating was deposited by low pressure chemical vapor deposition (LPCVD) using SiCl₄-BCl₃-NH₃-H₂-Ar gas system. The effect of the SiCl₄ flow rate on deposition kinetics was investigated. Results show that deposition rate increases at first and then decreases with the increase of the SiCl₄ flow rate. The surface of the coating is a uniform cauliflower-like structure at the SiCl₄ flow rate of 10 mL/min and 20 mL/min. The surface is covered with small spherical particles when the flow rate is 30 mL/min. The coatings deposited at various SiCl₄ flow rates are all X-ray amorphous and contain Si, B, N, and O elements. The main bonding states are B-N, Si-N, and N-O. B element and B-N bonding decrease with the increase of SiCl₄ flow rate, while Si element and Si-N bonding increase. The main deposition mechanism refers to two parallel reactions of BCl₃+NH₃ and SiCl₄+NH₃. The deposition process is mainly controlled by the reaction of BCl₃+NH₃.
منابع مشابه
Nucleation mechanisms in chemically vapor-deposited mullite coatings on SiC
Dense, uniform, and adherent chemically vapor-deposited mullite coatings were deposited on SiC substrates using the AlCl3–SiCl4–H2–CO2 system. Typical coating morphology consisted of a thin interfacial layer of g–Al2O3 nanocrystallites embedded within a vitreous SiO2-based matrix. When a critical Al/Si ratio of 3.2 ± 0.29 was reached within this nanocrystalline layer, mullite crystals nucleated...
متن کاملElectrochemical vapor deposition of semiconductors from gas phase with a solid membrane cell.
We demonstrate the feasibility of semiconductor deposition via the electrochemical reduction of gaseous precursors by the use of an anhydrous proton-conducting membrane, the solid acid CsHSO4, at 165 °C. This membrane electrode assembly was operated within the oxidation of hydrogen on a porous Pt anode and the deposition of Si or Ge under bias at the cathode from chloride-based gaseous precurso...
متن کاملبررسی سینتیک و سازوکار سنتز NH3 بر سطح کاتالیستهای مدل Fe(100) و K/Fe(100)
In this investigation kinetics and mechanism of NH3 synthesis over Fe(100) and K/Fe(100) model catalysts have been studied. In this context, adsorption kinetics of both N2/Fe (100) and H2/Fe (100)systems is initially investigated. By using statistical mechanic approach, we have determined the adsorption coefficient for N2 and H2 molecules as well as transition probability of different states ...
متن کاملHigh-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma
Silicon carbide films were deposited by radio frequency thermal plasma chemical vapor deposition (CVD) at rates up to several hundred micrometers per hour over a 40-mm diameter substrate. The films were primarily h-phase SiC. Film morphology was characterized by columnar growth terminating in hemispherical surfaces. The average crystallite size as determined by X-ray diffraction line broadening...
متن کاملStepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst
Atomic layer deposition (ALD) is a powerful deposition technique for constructing uniform, conformal, and ultrathin films in microelectronics, photovoltaics, catalysis, energy storage, and conversion. The possible pathways for silicon dioxide (SiO2) ALD using silicon tetrachloride (SiCl4) and water (H2O) without a catalyst have been investigated by means of density functional theory calculation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017